
Spirovetivanes from Fulvenes

Summary: Spirovetivanes can be synthesized by adding lithium dimethylcuprate to fulvene 7, in turn prepared from cyclopentadiene and 5-oxohexanal. No hydroazulene derivatives are formed. Diimide reduction of the diene 9 proceeds with high regiospecificity and the resulting olefin 11 can be transformed to the C_{12} ketone 6, hinesol 18, and β -vetivone 2, all constituents of vetiver oil.

Sir: Commercial vetiver oil [Vetiveria zizanioides (L.) Nash] contains the sesquiterpenes α -vetivone (1),¹ β -vetivone (2),² the nor sesquiterpene khusimone (3),³ and minor amounts of the biogenetically related C₁₂ compounds 4,⁴ 5,⁴ and 6.⁵ Since the spiroketone 6 appears to play a significant role in the reconstitution of the essential oil⁵ we have developed an efficient total synthesis from materials other than β -vetivone (2).^{6,19}

Condensation of 5-oxohexanal⁷ with cyclopentadiene in the presence of diethylamine⁸ gave fulvene 7 (uv max (C_2H_5OH) 255 nm, ϵ 1810) in 70% yield. We reasoned that lithium dimethylcuprate⁹ should add to this fulvene to produce the derived lithium cyclopentadienide which should combine with the carbonyl group to form a cyclohexanol in preference to a cycloheptanol. In practice the reaction, when performed in ether solution at -20 °C, produced a single carbinol 8 (80–90%). Efforts to regioselectively reduce one of the two double

bonds in 8 or 9 [prepared with CH_3COCl in $C_6H_5N(CH_3)_2$ at 50 °C for 6 h in 78% yield] over a variety of catalysts failed. Similarly, monoepoxides prepared by different methods turned out to be mixtures. Surprisingly, reduction with diimide¹⁰ (hydrazine, 30% hydrogen peroxide, ethanol, 20 °C, 3 days) yielded a single dihydro compound, 11, mp 35-37 °C (57% after recrystallization) and 5-10% liquid tetrahydroacetate 12. Dehvdration of the alcohols 8, 10, and 13 under kinetically controlled conditions afforded mostly exocyclic olefins demanding the presence of an equatorial hydroxy group.¹¹ The methyl group at C-10 is equatorial also because the chemical shift of its protons depends on the presence or absence of double bonds in the cyclopentane ring ($\delta 0.78$ in 9, 0.77 in 11, and 0.87 in 12), while the singlet caused by the axial C-6 methyl group does not (δ 1.53). Preferential reduction of the syn double bond in the reduction of 7-acetoxynorbornadiene has been attributed to an interaction of diimide and acetoxy group. $^{12}\,$ The much more subtle effect causing the rate enhancement in the reduction of only one of the two double bonds in the diene 9 will only find an explanation after the acetoxy-diimide interaction has been specified in precise structural terms.¹³

Transformation of the olefins 10 and 11 to the ketone 6 was accomplished in two ways. Treatment of the acetate 11 with diborane followed by oxidation with sodium dichromate¹⁴ gave the acetoxy ketone 14. Pyrolysis at 450 °C, followed by equilibration of endo and exocyclic olefins with p-toluenesulfonic acid in boiling benzene, yielded the more stable endocyclic olefin 6 [ir (CHCl₃) 1740 cm⁻¹] containing <10%exocyclic isomer (35% from 11). Spectral and chromatographic properties of racemic ketone 6 agreed with those of optically active material.¹⁵ In an alternate synthesis acetate 11 was hydrolvzed to the alcohol 10 (sodium hydroxide, ethanol, reflux) (95%) which on epoxidation with peracetic acid gave the epoxide 15 (95%) assumed to have the α configuration. Butyllithium in ether at room temperature caused isomerization to the ketone 13 (72%) which was dehydrated to olefin 6 in refluxing benzene containing *p*-toluenesulfonic acid (90%).

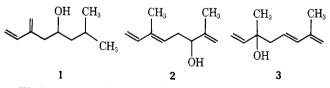
To complete syntheses of the C_{15} spirovetivanes, ketone 6 was converted to a mixture of epimeric nitriles 16 in 75% yield with the aid of *p*-toluenesulfonyl isocyanide.¹⁶ Condensation with methylmagnesium bromide provided the methyl ketones 17 (80%) which on treatment with methyllithium gave a 3:2 mixture of epimeric carbinols 18 (90%). Infrared and proton magnetic resonance spectra of the acetate 19 derived from the major epimer with α -oriented hydroxypropyl group were identical with those of authentic hinesol acetate (19).¹⁷ Oxidation of the mixture of diastereomeric alcohols 18 with chromium trioxide-pyridine¹⁸ afforded a crystalline mixture of epimeric α , β -unsaturated ketones **20**, mp 114–118 °C (70%). Dehydration with p-toluenesulfonic acid in hot benzene furnished racemic β -vetivone (2), mp 46–48 °C, identical with natural material.¹⁵ If the dehydration is monitored properly by thin layer chromatography the yield of pure β -vetivone (2) is 80%.

Acknowledgment. We are indebted to Firmenich SA, Geneva, for generous financial support.

References and Notes

- (1) J. A. Marshall and N. H. Andersen, Tetrahedron Lett., 1611 (1967); K. Endo
- and P. de Mayo, *Chem. Commun.*, 89 (1967). (2) J. A. Marshall and P. C. Johnson, *J. Am. Chem. soc.*, **89**, 2750 (1967).

- (3) D. C. Umarami, R. Seshadri, K. G. Gore, and K. K. Chakravarti, Flavour Ind., 623 (1970
- (4) B. Maurer, M. Fracheboud, A. Grieder, and G. Ohloff, Helv. Chim. Acta, 55, 2371 (1972).
- G. Ohloff, Firmenich SA, private communication.
- Papers describing the two most recent syntheses of β -vetivanes contain references to earlier work: D. Buddhsukh and P. Magnus, J. Chem. Soc., (6) Chem. Commun., 975 (1975); W. G. Dauben and D. J. Hart, J. Am. Chem. Soc., 50, 102 (1975); W. G. Dauben and D. J. Hart, J. Am. Chem. Soc., 97, 1622 (1975).
- R. I. Longley, W. S. Emerson, and A. J. Blardinelli, "Organic Syntheses" (7) H. I. Longley, W. S. Emerson, and A. J. Baroinelli, "Organic Syntheses", Collect. Vol. IV, Wiley, New York, N.Y., 1963, p 311; W. S. Emerson and R. I. Longley, U.S. Patent 2 624 764 (1953).
 W. Freiesleben, Angew. Chem., **75**, 576 (1963).
 H. O. House, Acc. Chem. Res., **9**, 59 (1976).
 E. J. Corey, W. L. Mock, and D. J. Pasto, Tetrahedron Lett., 347 (1961); S. Hünig, H.-R. Müller, and W. Thier, *ibid.*, 353 (1961).
- (10)
- (11) D. H. R. Barton, A. da S. Campos-Neves, and R. C. Cookson, J. Chem. Soc.,
- 3500 (1956). (12) W. C. Baird, Jr., B. Franzus, and J. H. Surridge, J. Am. Chem. Soc., 89, 410
- (1967). (13) The double bonds in cyclopentadiene are less reactive toward diimide than
- (15) The double bolds in Cyclopentadiene are *less* reactive toward olimitee than that in cyclopentenel [S. Siegel, M. Forman, R. P. Fisher, and S. E. Johnson, *J. Org. Chem.*, **40**, 3599 (1975).]
 (14) H. C. Brown and C. P. Garg, *J. Am. Chem. Soc.*, **83**, 2951 (1961).
 (15) We are indebted to Dr. B. Maurer, Firmenich SA, for an authentic sample
- of this substance
- O. H. Oldenziel and A. M. van Leusen, Tetrahedron Lett., 1357 (1973). (17) These spectra were kindly provided by Professor J. A. Marshall, North-
- western University (18) W. G. Dauben, M. Lorber, and D. S. Fullerton, J. Org. Chem., 34, 3587
- (1969). (19) Note Added in Proof. Compound 6 was recently prepared by a photo-chemical route: D. Caine, A. A. Boucugnani, S. T. Chao, J. B. Dawson, and P. F. Ingwalson, J. Org. Chem., 41, 1539 (1976).


George Büchi,* Dominique Berthet René Decorzant, Alfred Grieder, **Arnold Hauser**

Department of Chemistry Massachusetts Institute of Technology Cambridge, Massachusetts 02139 Received July 6, 1976

Terpene Synthesis via Pentadienyl Anions

Summary: The introduction of the terminal isoprenoid 1.3diene unit using pentadienyllithiums is illustrated by the synthesis of monoterpenes from Ho-leaf oil and Ledum palustre oil.

Sir: The formation of terpenes by head-to-tail linking of isoprene units has long been an objective of organic synthesis.¹ Although 1,5-dienes are more common among acyclic terpenes,² terpenoids with terminal isoprene residues present as 1,3-dienes of three types occur in nature. For example, tagetol³ (1) is a sex attractant of *Ips confusus*, compound 2^4 is a volatile constituent of Ledum palustre essential oil, and hotrienol⁵ (3) is a component of Japanese Ho-leaf oil.

We have recently reported⁶ a general method for the introduction of terminal isoprenoid 1,3-dienes of type 1. We now report a convenient method for the stereoselective production of isoprenoid (E)-1,3-dienes of the two remaining types.

Pentadienyl anions have been studied for some time,⁷ particularly with regard to the conformations in eq 1. The

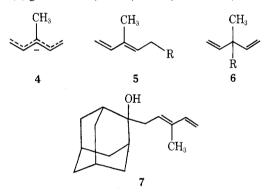
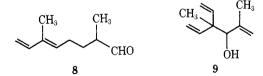
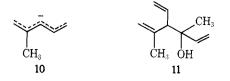

1

Table I. Reaction of 4 with Electrophiles at 0 °C


Entry	Electrophile	% 5	% 6
1	H ₂ O	96ª	4
2	Adamantanone	75^{b}	0
3	Methacrolein	$65^{b,c}$	0
4	$CH_2 = C(CH_3)(CH_2)_2 CHO$	40 ^b	60
5	CH ₃ (CH ₂) ₅ CHO	38^{b}	48
6	PhCHO	70 ^b	30
7	$CH_3(CH_2)_4CH_2I$	38^d	54
8	$CH_3(CH_2)_4CH_2I$	$58^{d,e}$	34
9	Cyclohexene oxide	28^{b}	72

^a Reference 8. ^b Isolated yields. ^c +9% compound 8. ^d GC yield. ^e With CuBr·SMe₂ (-78 °C).

three planar conformations, W, sickle, an U have been used to rationalize the sites of protonation in various derivatives. In general the W conformer protonates at C-1 and the U conformer at C-3 (the sickle form is intermediate). A recent ¹³C NMR determination⁸ indicated that 3-methylpentadienyllithium 4 exists almost exclusively as the W form from -80 to +40 °C. Thus protonation of 3-methylpentadienyllithium (4) gives 96% 5 (R = H, 95% E) and 4% 6 (R = H).



Reaction of anion 4 with adamantanone gave $7^9 (mp 59-61)$ °C) as the exclusive product (75% yield, >96% E). The pentadienyl anion 4 consequently gives us a convenient method for the introduction of the terminal 1,3-diene of type 2. Reaction of 4 with methacrolein gives the monoterpene 2 in 65% yield. Interestingly, the only other product, isolated in 9% yield, was the conjugate addition product 8 (99% E). Since the uncatalyzed 1,4 addition of an organolithium is rather unusual we felt that the copper catalyzed reaction might be very good. Surprisingly, with 4 and 1 equiv of CuI (THF, -78 °C), compound 8 was formed in only 30% yield and the 1,2 adduct 9 at

the 3 position was isolated in 25% yield!¹⁰ The scope of the reaction of 4 with various electrophiles (Table I) indicates that some exploratory work must be done in order to find optimal conditions for 1,3-diene production.¹¹

The synthesis of hotrienol 3, the last type of terpenoid 1.3-diene, was achieved using 2-methylpentadienyllithium 10. Compound 10 in contrast to 4 exists as a mixture of con-

